Franklin Park, Pennsylvania Fume and Dust Extraction Arm Systems

Franklin Park Industrial exhaust systems are designed to capture smoke, fume, dust, high-temperature air, and corrosive gases. These "pollutants" are ducted to an air cleaner (purification system) before discharge to the outside or returned to the workspace. Capturing air-entrained materials is best accomplished at the emission source, defined as source capture.

Multiple arm designs are available depending on the airstream constituents. The parameters evaluated are temperature, explosivity, corrosiveness, and particulate, all factors determining the type of arm that should be selected for a process application. Matching your expected exhaust volume and arm useage with the required exhaust CFM, pressure loses, and airstream being captured is what we do. SysTech has successfully applied extraction arms for over thirty years and will assist with the correct selection for your process.

Franklin Park, Pennsylvania Fume extraction arms with hoods or suction nozzles are the number one tool to maximize source capture efficiency. They capture the contaminated airstreams while getting close to the source without disrupting or slowing down the work process or collecting too much useable product. When the task or workpiece is difficult to access, in an isolated area, or along awkward points on an assembly line, extraction arms are a proven solution for maximum particulate, smoke, and fume collection.

Franklin Park, Pennsylvania Fume and Dust Extraction Arm Systems

Franklin Park PA Fume Extraction Arms

Industrial exhaust systems for capturing smoke, fume, dust, high-temperature air, and corrosive gases.

Franklin

Franklin Park, Pennsylvania Downdraft Tables, Benches, and Walk-In Enclosures

Dust and fume generating work areas within a facility can often be controlled with self-contained and moveable downdraft tables. Tables can be designed for tabletop downdraft only or combined with a backdraft airflow design for nuisance dust capture. Particulate micron size and the amount of collected particulate, smoke, or fume determines the air filtration systems selected, with typical options including throw-away filters, pulse-clean dust collectors, or wet collectors. For some applications, a downdraft bench that incorporates downdraft and backdraft exhaust can be designed for repetitive work processes.

Adding an enclosure around the dust source and containing the generated dust or fume in a walk-in booth minimizes the amount of air that needs to be cleaned. Dust control enclosures encapsulate processes where particulate, smoke, or fume are difficult to contain and are transported and dispersed within a room by cross drafts, mancoolers, compressed air clean-offs, or processing equipment like sanders and grinders.

Franklin Park, Pennsylvania Weld Fume Extraction Arm

Franklin Park, Pennsylvania Weld Fume Extraction Arm

The demand for weld smoke extraction arms is always high and mandates an arm category. Depending on the application, different designs use either smooth wall or flex hose tubing. Both designs use external positioning joints and a hood with an internal adjustable damper. The units are typically wall-mounted but have ceiling and floor support bracket options. Arm diameter options range from six to eight inches, and arm lengths vary from three feet up to thirty-six feet. Personal weld fume packages include a single extraction arm, exhaust fan, and air filter.

  • Low-pressure drop
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • Standard units include a wall bracket. Ceiling mount options are available.
  • Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', 14', 16', 23', 30', and 36'.
  • Shut off dampers built internally.

Franklin Park Laboratory Extraction Arms

The laboratory extraction arm is comprised of thin-wall anodized aluminum tubes with polypropylene swivel joints. A frequent option selection is all polypropylene construction with stainless steel airstream components for highly corrosive airstreams. Additionally, these arms may be constructed of conductive polypropylene material for spark resistance and ATEX-rated explosive applications. Arm tube diameters range from two to four inches, and arm lengths range from two feet up to eight and a half feet. Arms can be paired with a wall or ceiling bracket, several optional hoods, or a suction nozzle. Franklin Park, Pennsylvania Laboratory bench mount arms are an option and are available in three and four-inch diameter tubes up to six feet in length.

  • Market-leading low-pressure drop
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • Polypropylene (P.P.), ESD (spark forming applications), and ATEX (combustible applications) options are available.
  • Wall brackets, ceiling brackets, and table mount brackets are available.
  • Arm diameters include 2", 3", and 4", and arm lengths include 25", 30", 39", 45",51", 53", 59", 65", 75", 79", 83", and 104".
  • Various hood options for more efficient source capture include dome hoods, square hoods, flat screen hoods, metal hoods, and suction nozzles.
Franklin Park Laboratory Extraction Arms
Franklin Park, Pennsylvania Extraction Arm Selection and Performance

Franklin Park, Pennsylvania Extraction Arm Selection and Performance

The first step in extraction arm selection is determining how the arm will be used, the required work area, and any space constraints for hood positioning. The required arm length is determined by the arm mounting location and where the capture hood will be used. The selection of an extraction arm is based on several criteria:

Performance – The volume of exhaust air required is in cubic feet per minute or CFM, and the resistance to airflow is in inches W.G. or static pressure (S.P.) Because the arms are moveable, the S.P. thru the arm will change with arm and hood positioning.

The total S.P. requirement for an extraction arm is based on arm length, the number of arm elbows, the type of arm tubing, the type of hood, and internal or external support structure. Arm manufacturers include this value in their literature along with performance curves. The static pressure will change when the arm is repositioned (extended or compressed). Depending on the arm selected and the work area size, it could be a minor or significant change in fume capture. When choosing an arm, it is best to size the S.P. requirement as the worst case.

The CFM requirement for source capture varies with the collected fume, dust, or product. The amount of collected air is based on the hood capture efficiency, the position of the hood to the fume source, and any crossflow air currents. Follow the project design specifications or contact SysTech for recommended CFM.

Frequency of use – Infrequent usage or continual use dictates light or heavy-duty construction.

Applicable Codes – Typical requests include FDA compliance with food-grade materials or minimizing fire/explosion potential.

Environment – Dirt or abrasive materials in the ambient room air may adversely affect the arm joints. Also considered is hood capture efficiency being compromised where crossflow air currents exist in the workspace.

Airstream constituents – What is in the airstream will determine the materials of construction, most notably, explosion or fire hazards, abrasive materials, and aggressive chemicals. Materials can be aluminum, polypropylene, stainless steel, and in some cases, carbon steel.

Mounting Location - Where the arm is located will determine the arrangement of the design. We can provide them in bench, wall, or ceiling mount designs. These should be selected to access the captured waste stream by locating the arm as close as possible to the process.

Franklin Park, Pennsylvania Extraction Arm Selection and Performance
Franklin Park, Pennsylvania Fume Extraction Arm Mounting and Supports

Franklin Park, Pennsylvania Fume Extraction Arm Mounting and Supports

Fume extraction arms are continually moved, extended, and rotated, requiring them to be rigidly supported and mounted securely. A few factors affect mounting location: 1) the location of the fume source, 2) the coverage area for where the arm is used 3) the central system duct where the fume arm is connected.

Mounting options include:

Wall Mount - With duct systems running against a wall, mounting the arm (s) with brackets secured to a block wall or column is typical. If the central system duct is along the ceiling, on an outside wall, or mid-wall, there are designed brackets to fix the arm in place.

Bench Mount - Exhaust duct running along the floor allows mounting to a bench or tabletop. This mount has a standard option bracket for attaching the arm. Another standard bench mount is on a portable air filter or dust collector.

Ceiling Mount - Mounting the arms in the ceiling is an option if joists are present. A support weldment could be fabricated if a ceiling mount is a requirement. For low-weight short arms, the installation contractor can fabricate a wood fixture.

Stanchion Mount - When arms are located in the center of a facility having high bay areas, a stanchion will allow the mounting of an arm and hold it rigidly in place.