Falls Village, Connecticut Fume and Dust Extraction Arm Systems

Falls Village Industrial exhaust systems are designed to capture smoke, fume, dust, high-temperature air, and corrosive gases. These "pollutants" are ducted to an air cleaner (purification system) before discharge to the outside or returned to the workspace. Capturing air-entrained materials is best accomplished at the emission source, defined as source capture.

Multiple arm designs are available depending on the airstream constituents. The parameters evaluated are temperature, explosivity, corrosiveness, and particulate, all factors determining the type of arm that should be selected for a process application. Matching your expected exhaust volume and arm useage with the required exhaust CFM, pressure loses, and airstream being captured is what we do. SysTech has successfully applied extraction arms for over thirty years and will assist with the correct selection for your process.

Falls Village, Connecticut Fume extraction arms with hoods or suction nozzles are the number one tool to maximize source capture efficiency. They capture the contaminated airstreams while getting close to the source without disrupting or slowing down the work process or collecting too much useable product. When the task or workpiece is difficult to access, in an isolated area, or along awkward points on an assembly line, extraction arms are a proven solution for maximum particulate, smoke, and fume collection.

Falls Village, Connecticut Fume and Dust Extraction Arm Systems

Falls Village CT Fume Extraction Arms

Industrial exhaust systems for capturing smoke, fume, dust, high-temperature air, and corrosive gases.

Falls Village Laboratory Extraction Arms

The laboratory extraction arm is comprised of thin-wall anodized aluminum tubes with polypropylene swivel joints. A frequent option selection is all polypropylene construction with stainless steel airstream components for highly corrosive airstreams. Additionally, these arms may be constructed of conductive polypropylene material for spark resistance and ATEX-rated explosive applications. Arm tube diameters range from two to four inches, and arm lengths range from two feet up to eight and a half feet. Arms can be paired with a wall or ceiling bracket, several optional hoods, or a suction nozzle. Falls Village, Connecticut Laboratory bench mount arms are an option and are available in three and four-inch diameter tubes up to six feet in length.

  • Wall brackets, ceiling brackets, and table mount brackets are available.
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • Market-leading low-pressure drop
  • Various hood options for more efficient source capture include dome hoods, square hoods, flat screen hoods, metal hoods, and suction nozzles.
  • Arm diameters include 2", 3", and 4", and arm lengths include 25", 30", 39", 45",51", 53", 59", 65", 75", 79", 83", and 104".
  • Polypropylene (P.P.), ESD (spark forming applications), and ATEX (combustible applications) options are available.
Falls Village Laboratory Extraction Arms
Falls Village, Connecticut Extraction Arm Selection and Performance

Falls Village, Connecticut Extraction Arm Selection and Performance

The first step in extraction arm selection is determining how the arm will be used, the required work area, and any space constraints for hood positioning. The required arm length is determined by the arm mounting location and where the capture hood will be used. The selection of an extraction arm is based on several criteria:

Performance – The volume of exhaust air required is in cubic feet per minute or CFM, and the resistance to airflow is in inches W.G. or static pressure (S.P.) Because the arms are moveable, the S.P. thru the arm will change with arm and hood positioning.

The total S.P. requirement for an extraction arm is based on arm length, the number of arm elbows, the type of arm tubing, the type of hood, and internal or external support structure. Arm manufacturers include this value in their literature along with performance curves. The static pressure will change when the arm is repositioned (extended or compressed). Depending on the arm selected and the work area size, it could be a minor or significant change in fume capture. When choosing an arm, it is best to size the S.P. requirement as the worst case.

The CFM requirement for source capture varies with the collected fume, dust, or product. The amount of collected air is based on the hood capture efficiency, the position of the hood to the fume source, and any crossflow air currents. Follow the project design specifications or contact SysTech for recommended CFM.

Airstream constituents – What is in the airstream will determine the materials of construction, most notably, explosion or fire hazards, abrasive materials, and aggressive chemicals. Materials can be aluminum, polypropylene, stainless steel, and in some cases, carbon steel.

Environment – Dirt or abrasive materials in the ambient room air may adversely affect the arm joints. Also considered is hood capture efficiency being compromised where crossflow air currents exist in the workspace.

Frequency of use – Infrequent usage or continual use dictates light or heavy-duty construction.

Applicable Codes – Typical requests include FDA compliance with food-grade materials or minimizing fire/explosion potential.

Mounting Location - Where the arm is located will determine the arrangement of the design. We can provide them in bench, wall, or ceiling mount designs. These should be selected to access the captured waste stream by locating the arm as close as possible to the process.

Falls Village, Connecticut Extraction Arm Selection and Performance

Economical Industrial Extraction Arms in Falls Village CT


These extraction arms serve a similar function as the general-purpose extraction arm but are constructed with a flexible hose instead of metal tubing. This arm has cost savings, but some optional features are unavailable. These arms were designed for light-duty, intermittent applications and have limitations on some airstream constituents. Importantly, each application is reviewed upfront by SysTech will guide you through the selection process safely. Hose diameter alternatives range from four to eight inches, and arm lengths range from five to thirty-six feet. The standard hose material is blue PVC or white PVC with an option for PE-coated polyamide fabric for mild corrosive applications. Custom sizes can be designed using various parts for different arm models combined to make a new arm design.

Features and options:

  • Lightweight construction balanced by two gas springs.
  • Arm diameters include 4", 5", 6", and 8", and arm lengths include 5', 7', 10', 13', 16', 23', 30', and 36'.
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • High positional stability
  • Hood designed for maximum capture efficiency and extraction
  • Unique ease of maneuverability
  • External arm support
  • Lowest possible pressure drop, which helps save energy and lowers sound levels

Falls Village Telescopic Fume Extraction Arm

Telescopic extraction arms are designed to fit into confined spaces. They are used for those applications when the operator wants to "compress" the arm out of the way and pull it back to a working position. The unit will mount on the ceiling, wall, or floor stanchion. There are optional designs from which to choose. There is an arm with a ridged flex hose in six or eight-inch diameter having an operating range of seven feet to almost ten feet or a thin-walled tube design that is available in five-inch diameter and can telescope three feet out to seven feet. Both telescopic arm options would include a manual damper.

  • Swivel base
  • Powder coated steel wall bracket is standard
  • Black hose rated up to 195 degrees Fahrenheit (intermittent 260 degrees Fahrenheit)
  • Internal is telescopic
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • The hood is powder-coated aluminum and includes a grab handle and shutoff damper built within
  • Arm diameters are 6" and 8", and the operating range (compression) is 4' to 7'.
Falls Village Telescopic Fume Extraction Arm

Exhaust Fans for Fume Extraction Arms in Falls Village

Industrial exhaust system arms often need a connection to an exhaust fan for isolated applications or when needed for additional static resistance when connecting to an existing duct system. Fan CFM and static pressure must be examined in both cases to maintain system performance. When coupling with an exhaust fan, it should be constructed of similar or compatible materials to the extraction arm.

Cast Aluminum Pressure Blowers

Cast aluminum pressure blowers are typically supplied by manufacturers where there is a non-corrosive airstream. They are light, come in a wide range of designs, are compact, and are AMCA B spark-resistant as standard. Motors are available in single and three-phase TEFC and EXP frames.

Carbon Steel Fume Exhauster

If conditions of the airstream are suitable, a carbon steel painted fan is selected in a direct drive arrangement with a horizontal mount configuration that requires minimal space. Steel blowers have the option for AMCA construction up to AMCA A and 304 and 316 SS construction. Motors are available in single and three-phase TEFC and EXP frames.

Industrial Plastic Fume Exhaust Fans

Corrosive environments require materials of construction that will not degrade over time. Plastic construction is misunderstood as fragile, but industrial-grade designs are compatible with the harshest environment. The plastics typically used for construction are PVC or polypropylene (P.P.) and are an excellent choice for the efficient conveyance of corrosive, chemically laden, humid, or polluted gases, fumes, and air. Motors are available in single and three-phase TEFC and EXP frames.

Fume Extraction Arm Exhaust Fans in Falls Village