Fume and Dust Extraction Arm Systems in Avard, Oklahoma
Avard Fume industrial exhaust systems are designed to capture smoke, fume, dust, high-temperature air, and corrosive gases. These "pollutants" are ducted to an air cleaner (purification system) before discharge to the outside or returned to the workspace. Capturing air-entrained materials is best accomplished at the emission source, defined as source capture.
Avard, Oklahoma Fume extraction arms with hoods or suction nozzles are the number one tool to maximize source capture efficiency. They capture the contaminated airstreams while getting close to the source without disrupting or slowing down the work process or collecting too much useable product. When the task or workpiece is difficult to access, in an isolated area, or along awkward points on an assembly line, extraction arms are a proven solution for maximum particulate, smoke, and fume collection.
Multiple arm designs are available depending on the airstream constituents. The parameters evaluated are temperature, explosivity, corrosiveness, and particulate, all factors determining the type of arm that should be selected for a process application. Matching your expected exhaust volume and arm useage with the required exhaust CFM, pressure loses, and airstream being captured is what we do. SysTech has successfully applied extraction arms for over thirty years and will assist with the correct selection for your process.


Avard, Oklahoma Fume Extraction Arm Mounting and Supports
Fume extraction arms are continually moved, extended, and rotated, requiring them to be rigidly supported and mounted securely. A few factors affect mounting location: 1) the location of the fume source, 2) the coverage area for where the arm is used 3) the central system duct where the fume arm is connected.
Mounting options include:
Wall Mount - With duct systems running against a wall, mounting the arm (s) with brackets secured to a block wall or column is typical. If the central system duct is along the ceiling, on an outside wall, or mid-wall, there are designed brackets to fix the arm in place.
Bench Mount - Exhaust duct running along the floor allows mounting to a bench or tabletop. This mount has a standard option bracket for attaching the arm. Another standard bench mount is on a portable air filter or dust collector.
Ceiling Mount - Mounting the arms in the ceiling is an option if joists are present. A support weldment could be fabricated if a ceiling mount is a requirement. For low-weight short arms, the installation contractor can fabricate a wood fixture.
Stanchion Mount - When arms are located in the center of a facility having high bay areas, a stanchion will allow the mounting of an arm and hold it rigidly in place.

Avard, Oklahoma Weld Fume Extraction Arm
The demand for weld smoke extraction arms is always high and mandates an arm category. Depending on the application, different designs use either smooth wall or flex hose tubing. Both designs use external positioning joints and a hood with an internal adjustable damper. The units are typically wall-mounted but have ceiling and floor support bracket options. Arm diameter options range from six to eight inches, and arm lengths vary from three feet up to thirty-six feet. Personal weld fume packages include a single extraction arm, exhaust fan, and air filter.
- Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', 14', 16', 23', 30', and 36'.
- Standard units include a wall bracket. Ceiling mount options are available.
- Optional fume exhaust fans in aluminum, carbon steel, or PVC.
- Low-pressure drop
- Shut off dampers built internally.
Avard Laboratory Extraction Arms
The laboratory extraction arm is comprised of thin-wall anodized aluminum tubes with polypropylene swivel joints. A frequent option selection is all polypropylene construction with stainless steel airstream components for highly corrosive airstreams. Additionally, these arms may be constructed of conductive polypropylene material for spark resistance and ATEX-rated explosive applications. Arm tube diameters range from two to four inches, and arm lengths range from two feet up to eight and a half feet. Arms can be paired with a wall or ceiling bracket, several optional hoods, or a suction nozzle. Avard, Oklahoma Laboratory bench mount arms are an option and are available in three and four-inch diameter tubes up to six feet in length.
- Wall brackets, ceiling brackets, and table mount brackets are available.
- Market-leading low-pressure drop
- Various hood options for more efficient source capture include dome hoods, square hoods, flat screen hoods, metal hoods, and suction nozzles.
- Optional fume exhaust fans in aluminum, carbon steel, or PVC.
- Arm diameters include 2", 3", and 4", and arm lengths include 25", 30", 39", 45",51", 53", 59", 65", 75", 79", 83", and 104".
- Polypropylene (P.P.), ESD (spark forming applications), and ATEX (combustible applications) options are available.


Avard, Oklahoma Fume Extraction Arm Optional Accessories
Fume extraction arms have optional accessories that include:
Hood lights – Lights can be attached to the arm hood to provide better vision at the work point. Often used in welding applications.
Custom hoods – To maximize fume capture, standard circular or scoop-shaped hoods can be changed to a slotted design, rectangular, flat, or custom fabricated.
Floor Stanchion - When the ceiling is too high, or there are no walls, a floor stanchion can be used to mount the arm.
Tube materials – For those arms using tubing, construction materials include painted steel, aluminum, stainless steel, P.P., or PVC. Extraction arms that use flex hoses can use clear, fire retardant, high temperature, or anti-static hoses.
Wall Mount - A wall bracket designed to mount the arm to any wall or beam within the facility.
Nozzles - To get even closer to source capture, suction nozzles and flexible suction nozzles are available.
Ceiling Mount - For applications where arms are mounted/supported by the ceiling. The ceiling bracket varies in height depending on the height of the hard deck or Unistrut.

Avard, Oklahoma Extraction Arm Selection and Performance
The first step in extraction arm selection is determining how the arm will be used, the required work area, and any space constraints for hood positioning. The required arm length is determined by the arm mounting location and where the capture hood will be used. The selection of an extraction arm is based on several criteria:
Performance – The volume of exhaust air required is in cubic feet per minute or CFM, and the resistance to airflow is in inches W.G. or static pressure (S.P.) Because the arms are moveable, the S.P. thru the arm will change with arm and hood positioning.
The total S.P. requirement for an extraction arm is based on arm length, the number of arm elbows, the type of arm tubing, the type of hood, and internal or external support structure. Arm manufacturers include this value in their literature along with performance curves. The static pressure will change when the arm is repositioned (extended or compressed). Depending on the arm selected and the work area size, it could be a minor or significant change in fume capture. When choosing an arm, it is best to size the S.P. requirement as the worst case.
The CFM requirement for source capture varies with the collected fume, dust, or product. The amount of collected air is based on the hood capture efficiency, the position of the hood to the fume source, and any crossflow air currents. Follow the project design specifications or contact SysTech for recommended CFM.
Mounting Location - Where the arm is located will determine the arrangement of the design. We can provide them in bench, wall, or ceiling mount designs. These should be selected to access the captured waste stream by locating the arm as close as possible to the process.
Applicable Codes – Typical requests include FDA compliance with food-grade materials or minimizing fire/explosion potential.
Airstream constituents – What is in the airstream will determine the materials of construction, most notably, explosion or fire hazards, abrasive materials, and aggressive chemicals. Materials can be aluminum, polypropylene, stainless steel, and in some cases, carbon steel.
Frequency of use – Infrequent usage or continual use dictates light or heavy-duty construction.
Environment – Dirt or abrasive materials in the ambient room air may adversely affect the arm joints. Also considered is hood capture efficiency being compromised where crossflow air currents exist in the workspace.


Avard, Oklahoma Stainless Steel Extraction Arms
Aggressive airstream chemistry may require the arms to be constructed of 304 stainless steel. The tubing and hood are stainless, with external adjustment joints at the hood and swivel joints. Arm assemblies have a wall mounting bracket and an internal damper for airflow adjustment and shutoff. The standard flex hose at the joints is an FDA Pur Antistatic hose. Stainless steel arm tube diameters vary from three to eight inches, and arm lengths from three feet up to fourteen feet, all suitable for washdown applications. 316 stainless steel construction is an available option.
- External joints are anodized aluminum.
- 304 SS grab handle on the hood for easy mobility and positioning.
- Available in hanging and benchtop models.
- Clear anti-static FDA hose rated for 200 degrees Fahrenheit.
- Optional fume exhaust fans in aluminum, carbon steel, or PVC.
- Tubes, hood, internal shutoff damper, and duct connection collar are all constructed of 304SS
- Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', and 14'.