Fume and Dust Extraction Arm Systems in Asotin, Washington

Asotin Fume industrial exhaust systems are designed to capture smoke, fume, dust, high-temperature air, and corrosive gases. These "pollutants" are ducted to an air cleaner (purification system) before discharge to the outside or returned to the workspace. Capturing air-entrained materials is best accomplished at the emission source, defined as source capture.

Asotin, Washington Fume extraction arms with hoods or suction nozzles are the number one tool to maximize source capture efficiency. They capture the contaminated airstreams while getting close to the source without disrupting or slowing down the work process or collecting too much useable product. When the task or workpiece is difficult to access, in an isolated area, or along awkward points on an assembly line, extraction arms are a proven solution for maximum particulate, smoke, and fume collection.

Multiple arm designs are available depending on the airstream constituents. The parameters evaluated are temperature, explosivity, corrosiveness, and particulate, all factors determining the type of arm that should be selected for a process application. Matching your expected exhaust volume and arm useage with the required exhaust CFM, pressure loses, and airstream being captured is what we do. SysTech has successfully applied extraction arms for over thirty years and will assist with the correct selection for your process.

Fume and Dust Extraction Arm Systems in Asotin, Washington
Asotin, Washington Fume Extraction Arm Optional Accessories

Asotin, Washington Fume Extraction Arm Optional Accessories

Fume extraction arms have optional accessories that include:

Tube materials – For those arms using tubing, construction materials include painted steel, aluminum, stainless steel, P.P., or PVC. Extraction arms that use flex hoses can use clear, fire retardant, high temperature, or anti-static hoses.

Custom hoods – To maximize fume capture, standard circular or scoop-shaped hoods can be changed to a slotted design, rectangular, flat, or custom fabricated.

Floor Stanchion - When the ceiling is too high, or there are no walls, a floor stanchion can be used to mount the arm.

Ceiling Mount - For applications where arms are mounted/supported by the ceiling. The ceiling bracket varies in height depending on the height of the hard deck or Unistrut.

Wall Mount - A wall bracket designed to mount the arm to any wall or beam within the facility.

Hood lights – Lights can be attached to the arm hood to provide better vision at the work point. Often used in welding applications.

Nozzles - To get even closer to source capture, suction nozzles and flexible suction nozzles are available.

Asotin Laboratory Extraction Arms

The laboratory extraction arm is comprised of thin-wall anodized aluminum tubes with polypropylene swivel joints. A frequent option selection is all polypropylene construction with stainless steel airstream components for highly corrosive airstreams. Additionally, these arms may be constructed of conductive polypropylene material for spark resistance and ATEX-rated explosive applications. Arm tube diameters range from two to four inches, and arm lengths range from two feet up to eight and a half feet. Arms can be paired with a wall or ceiling bracket, several optional hoods, or a suction nozzle. Asotin, Washington Laboratory bench mount arms are an option and are available in three and four-inch diameter tubes up to six feet in length.

  • Polypropylene (P.P.), ESD (spark forming applications), and ATEX (combustible applications) options are available.
  • Various hood options for more efficient source capture include dome hoods, square hoods, flat screen hoods, metal hoods, and suction nozzles.
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • Market-leading low-pressure drop
  • Arm diameters include 2", 3", and 4", and arm lengths include 25", 30", 39", 45",51", 53", 59", 65", 75", 79", 83", and 104".
  • Wall brackets, ceiling brackets, and table mount brackets are available.
Asotin Laboratory Extraction Arms

Asotin Telescopic Fume Extraction Arm

Telescopic extraction arms are designed to fit into confined spaces. They are used for those applications when the operator wants to "compress" the arm out of the way and pull it back to a working position. The unit will mount on the ceiling, wall, or floor stanchion. There are optional designs from which to choose. There is an arm with a ridged flex hose in six or eight-inch diameter having an operating range of seven feet to almost ten feet or a thin-walled tube design that is available in five-inch diameter and can telescope three feet out to seven feet. Both telescopic arm options would include a manual damper.

  • The hood is powder-coated aluminum and includes a grab handle and shutoff damper built within
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • Black hose rated up to 195 degrees Fahrenheit (intermittent 260 degrees Fahrenheit)
  • Powder coated steel wall bracket is standard
  • Swivel base
  • Arm diameters are 6" and 8", and the operating range (compression) is 4' to 7'.
  • Internal is telescopic
Asotin Telescopic Fume Extraction Arm

Asotin ATEX Rated Fume Extraction Arms

Explosion-rated extraction arms are available for the handling of explosive gases and dust. (The combustible materials need to be identified upfront to determine the arm selection and hose material, if there is particulate, is corrosive.) These extraction arms meet the requirements of the ATEX Directive 2014/34/E.U. Category 2 for gases and dust for Zones 1 and 21 (areas where an explosive atmosphere is likely to occur during regular operation). ATEX-rated fume arm tube diameters vary from four to eight inches, and arm lengths are optional from five feet up to twenty-three feet.

  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • Arm diameters include 4", 5", 6", and 8", and arm lengths include 5', 7', 10', 13', 16', and 23'.
  • Flexible PE hose, fully grounded.
  • They are manufactured following ATEX directive 2014/34/E.U. Category 2 for gases and dust.
  • Models having black chemical resistance P.E. hose
  • Model having a semi-transparent white P.U. hose for dust-related pollutants.
Asotin ATEX Rated Fume Extraction Arms
Asotin, Washington Extraction Arm Selection and Performance

Asotin, Washington Extraction Arm Selection and Performance

The first step in extraction arm selection is determining how the arm will be used, the required work area, and any space constraints for hood positioning. The required arm length is determined by the arm mounting location and where the capture hood will be used. The selection of an extraction arm is based on several criteria:

Performance – The volume of exhaust air required is in cubic feet per minute or CFM, and the resistance to airflow is in inches W.G. or static pressure (S.P.) Because the arms are moveable, the S.P. thru the arm will change with arm and hood positioning.

The total S.P. requirement for an extraction arm is based on arm length, the number of arm elbows, the type of arm tubing, the type of hood, and internal or external support structure. Arm manufacturers include this value in their literature along with performance curves. The static pressure will change when the arm is repositioned (extended or compressed). Depending on the arm selected and the work area size, it could be a minor or significant change in fume capture. When choosing an arm, it is best to size the S.P. requirement as the worst case.

The CFM requirement for source capture varies with the collected fume, dust, or product. The amount of collected air is based on the hood capture efficiency, the position of the hood to the fume source, and any crossflow air currents. Follow the project design specifications or contact SysTech for recommended CFM.

Airstream constituents – What is in the airstream will determine the materials of construction, most notably, explosion or fire hazards, abrasive materials, and aggressive chemicals. Materials can be aluminum, polypropylene, stainless steel, and in some cases, carbon steel.

Environment – Dirt or abrasive materials in the ambient room air may adversely affect the arm joints. Also considered is hood capture efficiency being compromised where crossflow air currents exist in the workspace.

Frequency of use – Infrequent usage or continual use dictates light or heavy-duty construction.

Mounting Location - Where the arm is located will determine the arrangement of the design. We can provide them in bench, wall, or ceiling mount designs. These should be selected to access the captured waste stream by locating the arm as close as possible to the process.

Applicable Codes – Typical requests include FDA compliance with food-grade materials or minimizing fire/explosion potential.

Asotin, Washington Extraction Arm Selection and Performance

Economical Industrial Extraction Arms in Asotin WA


These extraction arms serve a similar function as the general-purpose extraction arm but are constructed with a flexible hose instead of metal tubing. This arm has cost savings, but some optional features are unavailable. These arms were designed for light-duty, intermittent applications and have limitations on some airstream constituents. Importantly, each application is reviewed upfront by SysTech will guide you through the selection process safely. Hose diameter alternatives range from four to eight inches, and arm lengths range from five to thirty-six feet. The standard hose material is blue PVC or white PVC with an option for PE-coated polyamide fabric for mild corrosive applications. Custom sizes can be designed using various parts for different arm models combined to make a new arm design.

Features and options:

  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • High positional stability
  • Hood designed for maximum capture efficiency and extraction
  • Lightweight construction balanced by two gas springs.
  • External arm support
  • Arm diameters include 4", 5", 6", and 8", and arm lengths include 5', 7', 10', 13', 16', 23', 30', and 36'.
  • Lowest possible pressure drop, which helps save energy and lowers sound levels
  • Unique ease of maneuverability