Fume and Dust Extraction Arm Systems in Arlington, Tennessee

Arlington Fume industrial exhaust systems are designed to capture smoke, fume, dust, high-temperature air, and corrosive gases. These "pollutants" are ducted to an air cleaner (purification system) before discharge to the outside or returned to the workspace. Capturing air-entrained materials is best accomplished at the emission source, defined as source capture.

Arlington, Tennessee Fume extraction arms with hoods or suction nozzles are the number one tool to maximize source capture efficiency. They capture the contaminated airstreams while getting close to the source without disrupting or slowing down the work process or collecting too much useable product. When the task or workpiece is difficult to access, in an isolated area, or along awkward points on an assembly line, extraction arms are a proven solution for maximum particulate, smoke, and fume collection.

Multiple arm designs are available depending on the airstream constituents. The parameters evaluated are temperature, explosivity, corrosiveness, and particulate, all factors determining the type of arm that should be selected for a process application. Matching your expected exhaust volume and arm useage with the required exhaust CFM, pressure loses, and airstream being captured is what we do. SysTech has successfully applied extraction arms for over thirty years and will assist with the correct selection for your process.

Fume and Dust Extraction Arm Systems in Arlington, Tennessee
General Purpose Arlington, Tennessee Industrial Extraction Arm

"General Purpose" Arlington, Tennessee Industrial Extraction Arm

We label these arms a standard issue because they can be universally applied to most fume and dust extraction applications. The general-purpose arm is suitable for capturing smoke, dust, or any non-corrosive product. They are constructed of smooth powder-coated steel or aluminum tubing, a capture hood with adjustment grips, flex hose joint covers, and external adjustment brackets for the hood and swivel joints. The assemblies come standard with a wall mounting bracket but also have ceiling and floor support brackets available. An internal damper is included for airflow adjustment or shutoff. The arm mounting brackets allow for 180⁰ and 360⁰ rotation. Arm diameter options range from three to ten inches, and arm lengths vary from three to thirty-two feet. The maximum airstream temperature for these arms is about 180 degrees Fahrenheit.

Features and options:

  • Includes duct connection collar
  • Grab handle around the hood that is aluminum powder-coated black.
  • The wall bracket is powder-coated black.
  • Black hose rated for 195 degrees Fahrenheit (intermittent 260 degrees Fahrenheit)
  • Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', and 14'.
  • An optional fume exhaust fan in aluminum, carbon steel, or PVC.
  • A shutoff damper is built into the lower tube.

Contact Us

    Arlington, Tennessee Stainless Steel Extraction Arms

    Arlington, Tennessee Stainless Steel Extraction Arms

    Aggressive airstream chemistry may require the arms to be constructed of 304 stainless steel. The tubing and hood are stainless, with external adjustment joints at the hood and swivel joints. Arm assemblies have a wall mounting bracket and an internal damper for airflow adjustment and shutoff. The standard flex hose at the joints is an FDA Pur Antistatic hose. Stainless steel arm tube diameters vary from three to eight inches, and arm lengths from three feet up to fourteen feet, all suitable for washdown applications. 316 stainless steel construction is an available option.

    • 304 SS grab handle on the hood for easy mobility and positioning.
    • Available in hanging and benchtop models.
    • Tubes, hood, internal shutoff damper, and duct connection collar are all constructed of 304SS
    • Clear anti-static FDA hose rated for 200 degrees Fahrenheit.
    • External joints are anodized aluminum.
    • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
    • Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', and 14'.
    Arlington, Tennessee Extraction Arm Selection and Performance

    Arlington, Tennessee Extraction Arm Selection and Performance

    The first step in extraction arm selection is determining how the arm will be used, the required work area, and any space constraints for hood positioning. The required arm length is determined by the arm mounting location and where the capture hood will be used. The selection of an extraction arm is based on several criteria:

    Performance – The volume of exhaust air required is in cubic feet per minute or CFM, and the resistance to airflow is in inches W.G. or static pressure (S.P.) Because the arms are moveable, the S.P. thru the arm will change with arm and hood positioning.

    The total S.P. requirement for an extraction arm is based on arm length, the number of arm elbows, the type of arm tubing, the type of hood, and internal or external support structure. Arm manufacturers include this value in their literature along with performance curves. The static pressure will change when the arm is repositioned (extended or compressed). Depending on the arm selected and the work area size, it could be a minor or significant change in fume capture. When choosing an arm, it is best to size the S.P. requirement as the worst case.

    The CFM requirement for source capture varies with the collected fume, dust, or product. The amount of collected air is based on the hood capture efficiency, the position of the hood to the fume source, and any crossflow air currents. Follow the project design specifications or contact SysTech for recommended CFM.

    Airstream constituents – What is in the airstream will determine the materials of construction, most notably, explosion or fire hazards, abrasive materials, and aggressive chemicals. Materials can be aluminum, polypropylene, stainless steel, and in some cases, carbon steel.

    Mounting Location - Where the arm is located will determine the arrangement of the design. We can provide them in bench, wall, or ceiling mount designs. These should be selected to access the captured waste stream by locating the arm as close as possible to the process.

    Environment – Dirt or abrasive materials in the ambient room air may adversely affect the arm joints. Also considered is hood capture efficiency being compromised where crossflow air currents exist in the workspace.

    Applicable Codes – Typical requests include FDA compliance with food-grade materials or minimizing fire/explosion potential.

    Frequency of use – Infrequent usage or continual use dictates light or heavy-duty construction.

    Arlington, Tennessee Extraction Arm Selection and Performance

    New and Retrofitted Extraction Arm Systems in Arlington

    When you install a new fume extraction arm or arms, it improves air cleaning system performance, resulting in a cleaner work environment. Expectations can be met if all-important selection factors are considered and limitations for capture are pointed out.

    If you are repairing, replacing, or adding a new arm or arms, to an existing system, the critical components of the fume exhaust system should be reviewed, including the duct system, the exhaust fan (s), and the air cleaning device. Systems are only as efficient as their individual parts, and SysTech will review your components with you to evaluate if your system is operating at peak performance.

    New and Retrofitted Extraction Arm Systems in Arlington
    Arlington, Tennessee Fume Extraction Arm Optional Accessories

    Arlington, Tennessee Fume Extraction Arm Optional Accessories

    Fume extraction arms have optional accessories that include:

    Ceiling Mount - For applications where arms are mounted/supported by the ceiling. The ceiling bracket varies in height depending on the height of the hard deck or Unistrut.

    Nozzles - To get even closer to source capture, suction nozzles and flexible suction nozzles are available.

    Tube materials – For those arms using tubing, construction materials include painted steel, aluminum, stainless steel, P.P., or PVC. Extraction arms that use flex hoses can use clear, fire retardant, high temperature, or anti-static hoses.

    Floor Stanchion - When the ceiling is too high, or there are no walls, a floor stanchion can be used to mount the arm.

    Custom hoods – To maximize fume capture, standard circular or scoop-shaped hoods can be changed to a slotted design, rectangular, flat, or custom fabricated.

    Hood lights – Lights can be attached to the arm hood to provide better vision at the work point. Often used in welding applications.

    Wall Mount - A wall bracket designed to mount the arm to any wall or beam within the facility.