Fume and Dust Extraction Arm Systems in Arlington, Minnesota
Arlington Fume industrial exhaust systems are designed to capture smoke, fume, dust, high-temperature air, and corrosive gases. These "pollutants" are ducted to an air cleaner (purification system) before discharge to the outside or returned to the workspace. Capturing air-entrained materials is best accomplished at the emission source, defined as source capture.
Arlington, Minnesota Fume extraction arms with hoods or suction nozzles are the number one tool to maximize source capture efficiency. They capture the contaminated airstreams while getting close to the source without disrupting or slowing down the work process or collecting too much useable product. When the task or workpiece is difficult to access, in an isolated area, or along awkward points on an assembly line, extraction arms are a proven solution for maximum particulate, smoke, and fume collection.
Multiple arm designs are available depending on the airstream constituents. The parameters evaluated are temperature, explosivity, corrosiveness, and particulate, all factors determining the type of arm that should be selected for a process application. Matching your expected exhaust volume and arm useage with the required exhaust CFM, pressure loses, and airstream being captured is what we do. SysTech has successfully applied extraction arms for over thirty years and will assist with the correct selection for your process.


Arlington, Minnesota Weld Fume Extraction Arm
The demand for weld smoke extraction arms is always high and mandates an arm category. Depending on the application, different designs use either smooth wall or flex hose tubing. Both designs use external positioning joints and a hood with an internal adjustable damper. The units are typically wall-mounted but have ceiling and floor support bracket options. Arm diameter options range from six to eight inches, and arm lengths vary from three feet up to thirty-six feet. Personal weld fume packages include a single extraction arm, exhaust fan, and air filter.
- Optional fume exhaust fans in aluminum, carbon steel, or PVC.
- Shut off dampers built internally.
- Standard units include a wall bracket. Ceiling mount options are available.
- Low-pressure drop
- Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', 14', 16', 23', 30', and 36'.
Arlington Telescopic Fume Extraction Arm
Telescopic extraction arms are designed to fit into confined spaces. They are used for those applications when the operator wants to "compress" the arm out of the way and pull it back to a working position. The unit will mount on the ceiling, wall, or floor stanchion. There are optional designs from which to choose. There is an arm with a ridged flex hose in six or eight-inch diameter having an operating range of seven feet to almost ten feet or a thin-walled tube design that is available in five-inch diameter and can telescope three feet out to seven feet. Both telescopic arm options would include a manual damper.
- Powder coated steel wall bracket is standard
- Arm diameters are 6" and 8", and the operating range (compression) is 4' to 7'.
- The hood is powder-coated aluminum and includes a grab handle and shutoff damper built within
- Black hose rated up to 195 degrees Fahrenheit (intermittent 260 degrees Fahrenheit)
- Optional fume exhaust fans in aluminum, carbon steel, or PVC.
- Internal is telescopic
- Swivel base

Arlington MN Fume Extraction Arms
Industrial exhaust systems for capturing smoke, fume, dust, high-temperature air, and corrosive gases.

Arlington, Minnesota Fume Extraction Arm Optional Accessories
Fume extraction arms have optional accessories that include:
Hood lights – Lights can be attached to the arm hood to provide better vision at the work point. Often used in welding applications.
Wall Mount - A wall bracket designed to mount the arm to any wall or beam within the facility.
Tube materials – For those arms using tubing, construction materials include painted steel, aluminum, stainless steel, P.P., or PVC. Extraction arms that use flex hoses can use clear, fire retardant, high temperature, or anti-static hoses.
Ceiling Mount - For applications where arms are mounted/supported by the ceiling. The ceiling bracket varies in height depending on the height of the hard deck or Unistrut.
Custom hoods – To maximize fume capture, standard circular or scoop-shaped hoods can be changed to a slotted design, rectangular, flat, or custom fabricated.
Floor Stanchion - When the ceiling is too high, or there are no walls, a floor stanchion can be used to mount the arm.
Nozzles - To get even closer to source capture, suction nozzles and flexible suction nozzles are available.

Arlington, Minnesota Stainless Steel Extraction Arms
Aggressive airstream chemistry may require the arms to be constructed of 304 stainless steel. The tubing and hood are stainless, with external adjustment joints at the hood and swivel joints. Arm assemblies have a wall mounting bracket and an internal damper for airflow adjustment and shutoff. The standard flex hose at the joints is an FDA Pur Antistatic hose. Stainless steel arm tube diameters vary from three to eight inches, and arm lengths from three feet up to fourteen feet, all suitable for washdown applications. 316 stainless steel construction is an available option.
- Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', and 14'.
- Clear anti-static FDA hose rated for 200 degrees Fahrenheit.
- External joints are anodized aluminum.
- 304 SS grab handle on the hood for easy mobility and positioning.
- Tubes, hood, internal shutoff damper, and duct connection collar are all constructed of 304SS
- Optional fume exhaust fans in aluminum, carbon steel, or PVC.
- Available in hanging and benchtop models.

Arlington, Minnesota Extraction Arm Selection and Performance
The first step in extraction arm selection is determining how the arm will be used, the required work area, and any space constraints for hood positioning. The required arm length is determined by the arm mounting location and where the capture hood will be used. The selection of an extraction arm is based on several criteria:
Performance – The volume of exhaust air required is in cubic feet per minute or CFM, and the resistance to airflow is in inches W.G. or static pressure (S.P.) Because the arms are moveable, the S.P. thru the arm will change with arm and hood positioning.
The total S.P. requirement for an extraction arm is based on arm length, the number of arm elbows, the type of arm tubing, the type of hood, and internal or external support structure. Arm manufacturers include this value in their literature along with performance curves. The static pressure will change when the arm is repositioned (extended or compressed). Depending on the arm selected and the work area size, it could be a minor or significant change in fume capture. When choosing an arm, it is best to size the S.P. requirement as the worst case.
The CFM requirement for source capture varies with the collected fume, dust, or product. The amount of collected air is based on the hood capture efficiency, the position of the hood to the fume source, and any crossflow air currents. Follow the project design specifications or contact SysTech for recommended CFM.
Airstream constituents – What is in the airstream will determine the materials of construction, most notably, explosion or fire hazards, abrasive materials, and aggressive chemicals. Materials can be aluminum, polypropylene, stainless steel, and in some cases, carbon steel.
Mounting Location - Where the arm is located will determine the arrangement of the design. We can provide them in bench, wall, or ceiling mount designs. These should be selected to access the captured waste stream by locating the arm as close as possible to the process.
Environment – Dirt or abrasive materials in the ambient room air may adversely affect the arm joints. Also considered is hood capture efficiency being compromised where crossflow air currents exist in the workspace.
Frequency of use – Infrequent usage or continual use dictates light or heavy-duty construction.
Applicable Codes – Typical requests include FDA compliance with food-grade materials or minimizing fire/explosion potential.
