Ansley, Nebraska Fume and Dust Extraction Arm Systems

Ansley Industrial exhaust systems are designed to capture smoke, fume, dust, high-temperature air, and corrosive gases. These "pollutants" are ducted to an air cleaner (purification system) before discharge to the outside or returned to the workspace. Capturing air-entrained materials is best accomplished at the emission source, defined as source capture.

Multiple arm designs are available depending on the airstream constituents. The parameters evaluated are temperature, explosivity, corrosiveness, and particulate, all factors determining the type of arm that should be selected for a process application. Matching your expected exhaust volume and arm useage with the required exhaust CFM, pressure loses, and airstream being captured is what we do. SysTech has successfully applied extraction arms for over thirty years and will assist with the correct selection for your process.

Ansley, Nebraska Fume extraction arms with hoods or suction nozzles are the number one tool to maximize source capture efficiency. They capture the contaminated airstreams while getting close to the source without disrupting or slowing down the work process or collecting too much useable product. When the task or workpiece is difficult to access, in an isolated area, or along awkward points on an assembly line, extraction arms are a proven solution for maximum particulate, smoke, and fume collection.

Ansley, Nebraska Fume and Dust Extraction Arm Systems

Economical Industrial Extraction Arms in Ansley NE


These extraction arms serve a similar function as the general-purpose extraction arm but are constructed with a flexible hose instead of metal tubing. This arm has cost savings, but some optional features are unavailable. These arms were designed for light-duty, intermittent applications and have limitations on some airstream constituents. Importantly, each application is reviewed upfront by SysTech will guide you through the selection process safely. Hose diameter alternatives range from four to eight inches, and arm lengths range from five to thirty-six feet. The standard hose material is blue PVC or white PVC with an option for PE-coated polyamide fabric for mild corrosive applications. Custom sizes can be designed using various parts for different arm models combined to make a new arm design.

Features and options:

  • Unique ease of maneuverability
  • Lightweight construction balanced by two gas springs.
  • External arm support
  • Arm diameters include 4", 5", 6", and 8", and arm lengths include 5', 7', 10', 13', 16', 23', 30', and 36'.
  • Lowest possible pressure drop, which helps save energy and lowers sound levels
  • Hood designed for maximum capture efficiency and extraction
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • High positional stability

Exhaust Fans for Fume Extraction Arms in Ansley

Industrial exhaust system arms often need a connection to an exhaust fan for isolated applications or when needed for additional static resistance when connecting to an existing duct system. Fan CFM and static pressure must be examined in both cases to maintain system performance. When coupling with an exhaust fan, it should be constructed of similar or compatible materials to the extraction arm.

Cast Aluminum Pressure Blowers

Cast aluminum pressure blowers are typically supplied by manufacturers where there is a non-corrosive airstream. They are light, come in a wide range of designs, are compact, and are AMCA B spark-resistant as standard. Motors are available in single and three-phase TEFC and EXP frames.

Carbon Steel Fume Exhauster

If conditions of the airstream are suitable, a carbon steel painted fan is selected in a direct drive arrangement with a horizontal mount configuration that requires minimal space. Steel blowers have the option for AMCA construction up to AMCA A and 304 and 316 SS construction. Motors are available in single and three-phase TEFC and EXP frames.

Industrial Plastic Fume Exhaust Fans

Corrosive environments require materials of construction that will not degrade over time. Plastic construction is misunderstood as fragile, but industrial-grade designs are compatible with the harshest environment. The plastics typically used for construction are PVC or polypropylene (P.P.) and are an excellent choice for the efficient conveyance of corrosive, chemically laden, humid, or polluted gases, fumes, and air. Motors are available in single and three-phase TEFC and EXP frames.

Fume Extraction Arm Exhaust Fans in Ansley
Ansley, Nebraska Stainless Steel Extraction Arms

Ansley, Nebraska Stainless Steel Extraction Arms

Aggressive airstream chemistry may require the arms to be constructed of 304 stainless steel. The tubing and hood are stainless, with external adjustment joints at the hood and swivel joints. Arm assemblies have a wall mounting bracket and an internal damper for airflow adjustment and shutoff. The standard flex hose at the joints is an FDA Pur Antistatic hose. Stainless steel arm tube diameters vary from three to eight inches, and arm lengths from three feet up to fourteen feet, all suitable for washdown applications. 316 stainless steel construction is an available option.

  • Clear anti-static FDA hose rated for 200 degrees Fahrenheit.
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', and 14'.
  • Available in hanging and benchtop models.
  • External joints are anodized aluminum.
  • 304 SS grab handle on the hood for easy mobility and positioning.
  • Tubes, hood, internal shutoff damper, and duct connection collar are all constructed of 304SS

Ansley Laboratory Extraction Arms

The laboratory extraction arm is comprised of thin-wall anodized aluminum tubes with polypropylene swivel joints. A frequent option selection is all polypropylene construction with stainless steel airstream components for highly corrosive airstreams. Additionally, these arms may be constructed of conductive polypropylene material for spark resistance and ATEX-rated explosive applications. Arm tube diameters range from two to four inches, and arm lengths range from two feet up to eight and a half feet. Arms can be paired with a wall or ceiling bracket, several optional hoods, or a suction nozzle. Ansley, Nebraska Laboratory bench mount arms are an option and are available in three and four-inch diameter tubes up to six feet in length.

  • Wall brackets, ceiling brackets, and table mount brackets are available.
  • Various hood options for more efficient source capture include dome hoods, square hoods, flat screen hoods, metal hoods, and suction nozzles.
  • Arm diameters include 2", 3", and 4", and arm lengths include 25", 30", 39", 45",51", 53", 59", 65", 75", 79", 83", and 104".
  • Market-leading low-pressure drop
  • Polypropylene (P.P.), ESD (spark forming applications), and ATEX (combustible applications) options are available.
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
Ansley Laboratory Extraction Arms
Ansley, Nebraska Extraction Arm Selection and Performance

Ansley, Nebraska Extraction Arm Selection and Performance

The first step in extraction arm selection is determining how the arm will be used, the required work area, and any space constraints for hood positioning. The required arm length is determined by the arm mounting location and where the capture hood will be used. The selection of an extraction arm is based on several criteria:

Performance – The volume of exhaust air required is in cubic feet per minute or CFM, and the resistance to airflow is in inches W.G. or static pressure (S.P.) Because the arms are moveable, the S.P. thru the arm will change with arm and hood positioning.

The total S.P. requirement for an extraction arm is based on arm length, the number of arm elbows, the type of arm tubing, the type of hood, and internal or external support structure. Arm manufacturers include this value in their literature along with performance curves. The static pressure will change when the arm is repositioned (extended or compressed). Depending on the arm selected and the work area size, it could be a minor or significant change in fume capture. When choosing an arm, it is best to size the S.P. requirement as the worst case.

The CFM requirement for source capture varies with the collected fume, dust, or product. The amount of collected air is based on the hood capture efficiency, the position of the hood to the fume source, and any crossflow air currents. Follow the project design specifications or contact SysTech for recommended CFM.

Environment – Dirt or abrasive materials in the ambient room air may adversely affect the arm joints. Also considered is hood capture efficiency being compromised where crossflow air currents exist in the workspace.

Frequency of use – Infrequent usage or continual use dictates light or heavy-duty construction.

Mounting Location - Where the arm is located will determine the arrangement of the design. We can provide them in bench, wall, or ceiling mount designs. These should be selected to access the captured waste stream by locating the arm as close as possible to the process.

Applicable Codes – Typical requests include FDA compliance with food-grade materials or minimizing fire/explosion potential.

Airstream constituents – What is in the airstream will determine the materials of construction, most notably, explosion or fire hazards, abrasive materials, and aggressive chemicals. Materials can be aluminum, polypropylene, stainless steel, and in some cases, carbon steel.

Ansley, Nebraska Extraction Arm Selection and Performance

Contact Us