Adamson, Oklahoma Fume and Dust Extraction Arm Systems

Adamson Industrial exhaust systems are designed to capture smoke, fume, dust, high-temperature air, and corrosive gases. These "pollutants" are ducted to an air cleaner (purification system) before discharge to the outside or returned to the workspace. Capturing air-entrained materials is best accomplished at the emission source, defined as source capture.

Multiple arm designs are available depending on the airstream constituents. The parameters evaluated are temperature, explosivity, corrosiveness, and particulate, all factors determining the type of arm that should be selected for a process application. Matching your expected exhaust volume and arm useage with the required exhaust CFM, pressure loses, and airstream being captured is what we do. SysTech has successfully applied extraction arms for over thirty years and will assist with the correct selection for your process.

Adamson, Oklahoma Fume extraction arms with hoods or suction nozzles are the number one tool to maximize source capture efficiency. They capture the contaminated airstreams while getting close to the source without disrupting or slowing down the work process or collecting too much useable product. When the task or workpiece is difficult to access, in an isolated area, or along awkward points on an assembly line, extraction arms are a proven solution for maximum particulate, smoke, and fume collection.

Adamson, Oklahoma Fume and Dust Extraction Arm Systems

Adamson ATEX Rated Fume Extraction Arms

Explosion-rated extraction arms are available for the handling of explosive gases and dust. (The combustible materials need to be identified upfront to determine the arm selection and hose material, if there is particulate, is corrosive.) These extraction arms meet the requirements of the ATEX Directive 2014/34/E.U. Category 2 for gases and dust for Zones 1 and 21 (areas where an explosive atmosphere is likely to occur during regular operation). ATEX-rated fume arm tube diameters vary from four to eight inches, and arm lengths are optional from five feet up to twenty-three feet.

  • Flexible PE hose, fully grounded.
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • Model having a semi-transparent white P.U. hose for dust-related pollutants.
  • Models having black chemical resistance P.E. hose
  • Arm diameters include 4", 5", 6", and 8", and arm lengths include 5', 7', 10', 13', 16', and 23'.
  • They are manufactured following ATEX directive 2014/34/E.U. Category 2 for gases and dust.
Adamson ATEX Rated Fume Extraction Arms
General Purpose Adamson, Oklahoma Industrial Extraction Arm

"General Purpose" Adamson, Oklahoma Industrial Extraction Arm

We label these arms a standard issue because they can be universally applied to most fume and dust extraction applications. The general-purpose arm is suitable for capturing smoke, dust, or any non-corrosive product. They are constructed of smooth powder-coated steel or aluminum tubing, a capture hood with adjustment grips, flex hose joint covers, and external adjustment brackets for the hood and swivel joints. The assemblies come standard with a wall mounting bracket but also have ceiling and floor support brackets available. An internal damper is included for airflow adjustment or shutoff. The arm mounting brackets allow for 180⁰ and 360⁰ rotation. Arm diameter options range from three to ten inches, and arm lengths vary from three to thirty-two feet. The maximum airstream temperature for these arms is about 180 degrees Fahrenheit.

Features and options:

  • The wall bracket is powder-coated black.
  • Grab handle around the hood that is aluminum powder-coated black.
  • Black hose rated for 195 degrees Fahrenheit (intermittent 260 degrees Fahrenheit)
  • Includes duct connection collar
  • An optional fume exhaust fan in aluminum, carbon steel, or PVC.
  • A shutoff damper is built into the lower tube.
  • Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', and 14'.
Adamson, Oklahoma Fume Extraction Arm Mounting and Supports

Adamson, Oklahoma Fume Extraction Arm Mounting and Supports

Fume extraction arms are continually moved, extended, and rotated, requiring them to be rigidly supported and mounted securely. A few factors affect mounting location: 1) the location of the fume source, 2) the coverage area for where the arm is used 3) the central system duct where the fume arm is connected.

Mounting options include:

Wall Mount - With duct systems running against a wall, mounting the arm (s) with brackets secured to a block wall or column is typical. If the central system duct is along the ceiling, on an outside wall, or mid-wall, there are designed brackets to fix the arm in place.

Bench Mount - Exhaust duct running along the floor allows mounting to a bench or tabletop. This mount has a standard option bracket for attaching the arm. Another standard bench mount is on a portable air filter or dust collector.

Ceiling Mount - Mounting the arms in the ceiling is an option if joists are present. A support weldment could be fabricated if a ceiling mount is a requirement. For low-weight short arms, the installation contractor can fabricate a wood fixture.

Stanchion Mount - When arms are located in the center of a facility having high bay areas, a stanchion will allow the mounting of an arm and hold it rigidly in place.

Adamson, Oklahoma Stainless Steel Extraction Arms

Adamson, Oklahoma Stainless Steel Extraction Arms

Aggressive airstream chemistry may require the arms to be constructed of 304 stainless steel. The tubing and hood are stainless, with external adjustment joints at the hood and swivel joints. Arm assemblies have a wall mounting bracket and an internal damper for airflow adjustment and shutoff. The standard flex hose at the joints is an FDA Pur Antistatic hose. Stainless steel arm tube diameters vary from three to eight inches, and arm lengths from three feet up to fourteen feet, all suitable for washdown applications. 316 stainless steel construction is an available option.

  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', and 14'.
  • 304 SS grab handle on the hood for easy mobility and positioning.
  • Available in hanging and benchtop models.
  • Tubes, hood, internal shutoff damper, and duct connection collar are all constructed of 304SS
  • External joints are anodized aluminum.
  • Clear anti-static FDA hose rated for 200 degrees Fahrenheit.
Adamson, Oklahoma Extraction Arm Selection and Performance

Adamson, Oklahoma Extraction Arm Selection and Performance

The first step in extraction arm selection is determining how the arm will be used, the required work area, and any space constraints for hood positioning. The required arm length is determined by the arm mounting location and where the capture hood will be used. The selection of an extraction arm is based on several criteria:

Performance – The volume of exhaust air required is in cubic feet per minute or CFM, and the resistance to airflow is in inches W.G. or static pressure (S.P.) Because the arms are moveable, the S.P. thru the arm will change with arm and hood positioning.

The total S.P. requirement for an extraction arm is based on arm length, the number of arm elbows, the type of arm tubing, the type of hood, and internal or external support structure. Arm manufacturers include this value in their literature along with performance curves. The static pressure will change when the arm is repositioned (extended or compressed). Depending on the arm selected and the work area size, it could be a minor or significant change in fume capture. When choosing an arm, it is best to size the S.P. requirement as the worst case.

The CFM requirement for source capture varies with the collected fume, dust, or product. The amount of collected air is based on the hood capture efficiency, the position of the hood to the fume source, and any crossflow air currents. Follow the project design specifications or contact SysTech for recommended CFM.

Airstream constituents – What is in the airstream will determine the materials of construction, most notably, explosion or fire hazards, abrasive materials, and aggressive chemicals. Materials can be aluminum, polypropylene, stainless steel, and in some cases, carbon steel.

Environment – Dirt or abrasive materials in the ambient room air may adversely affect the arm joints. Also considered is hood capture efficiency being compromised where crossflow air currents exist in the workspace.

Mounting Location - Where the arm is located will determine the arrangement of the design. We can provide them in bench, wall, or ceiling mount designs. These should be selected to access the captured waste stream by locating the arm as close as possible to the process.

Frequency of use – Infrequent usage or continual use dictates light or heavy-duty construction.

Applicable Codes – Typical requests include FDA compliance with food-grade materials or minimizing fire/explosion potential.

Adamson, Oklahoma Extraction Arm Selection and Performance
Adamson, Oklahoma Weld Fume Extraction Arm

Adamson, Oklahoma Weld Fume Extraction Arm

The demand for weld smoke extraction arms is always high and mandates an arm category. Depending on the application, different designs use either smooth wall or flex hose tubing. Both designs use external positioning joints and a hood with an internal adjustable damper. The units are typically wall-mounted but have ceiling and floor support bracket options. Arm diameter options range from six to eight inches, and arm lengths vary from three feet up to thirty-six feet. Personal weld fume packages include a single extraction arm, exhaust fan, and air filter.

  • Standard units include a wall bracket. Ceiling mount options are available.
  • Shut off dampers built internally.
  • Low-pressure drop
  • Optional fume exhaust fans in aluminum, carbon steel, or PVC.
  • Arm diameters include 3", 4", 5", 6", and 8", and arm lengths include 3', 5', 7', 8', 10', 14', 16', 23', 30', and 36'.